Three New Benzophenone Glucosides from the Leaves of *Planchonella* obovata

by Shoei-Sheng Lee*, Chang-Cheng Tseng, and Chien-Kuang Chen

School of Pharmacy, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Rd, Taipei 10051, Taiwan, R.O.C. (phone/fax: +886223916127; e-mail: shoeilee@ntu.edu.tw)

Chemical investigation of the EtOH extract of the leaves of *Planchonella obovata* resulted in the isolation of four benzophenone glucosides, 1-4, of which three, 2-4, are new chemical entities together with five known flavonol glycosides. Their structures were elucidated by spectroscopic analysis. Among the isolated compounds, iriflophenone 2-*O*-(2,6-di-*O*-galloyl)- β -D-glucopyranoside (4) showed some activity (91.4 and 15.0% inhibition at 100 and 10 µg/ml, resp.) against the α -glucosidase of *Bacillus stearothermophilus*.

Introduction. – Inhibitors of α -glucosidases located in the small intestine brush border reduce the release of glucose from dietary carbohydrates and improve the glycemic control [1]. Several α -glucosidase inhibitors, e.g., acarbose and miglitol, are currently used in clinic for the treatment of type-II diabetes [2]. In this context, we had set up an enzymatic screening system to find new α -glucosidase inhibitors from higher plants [3]. A preliminary study indicated that the AcOEt- and BuOH-soluble fractions of the MeOH extract of the leaves of *Planchonella obovata* (R. Br.) PIERRE (Sapotaceae) were active against α -glucosidase, both showing more than 85% inhibition at 100 µg/ml, and 15 to 20% inhibition at 10 µg/ml. P. obovata is an evergreen large tree, widely distributed in Tropical Asia such as India, Malaysia, Philippines, and Taiwan, serving as street and garden tree [4]. Previous studies on the chemical constituents of the Planchonella plants resulted in the isolation of pyrrolizidine alkaloids [5], triterpenoids [6], steroids, and saccharides [7]. However, no chemical investigation of the species P. obovata has been reported so far. Bioassayguided fractionation and separation of these two active fractions via Sephadex LH-20, centrifugal partition chromatography, semi-preparative and preparative HPLC on RP-18 columns led to the isolation of nine compounds. Here, we describe the structural characterization and α -glucosidase inhibitory activity of these compounds.

Results and Discussion. – Compounds 1–4 (*Fig. 1*) possessed a common 2,4,4',6tetraoxygenated benzophenone skeleton characteristic of iriflophenone derivatives. This conclusion was supported by their ¹H-NMR spectra which exhibited characteristic signals for a *meta*-coupled AX system (δ (H) 6.06 and 6.24 (J=2.0) for 1) and an AA'XX' system (δ (H) 7.68 and 6.78 (J=8.7) for 1), and by their ¹³C-NMR spectra, which displayed signals for a conjugated CO group (δ (C) 197.5 (C(7)) for 1), four Obearing aryl C-atoms (164 ppm > δ (C) > 157 ppm), six aromatic CH groups, of which two (for C(3) and C(5)) appeared between 95 and 99 ppm, and two non-O-bearing

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

quaternary C-atoms, one around $\delta(C)$ 110 (for C(1)) and the other around $\delta(C)$ 132 (for C(1')) [8]. These data also revealed an asymmetric moiety in ring A.

Fig. 1. Structures of compounds 1-9

Compound 1 had a molecular formula C₁₉H₂₀O₁₀, as deduced from ESI-MS, and ¹Hand ¹³C-NMR data. It contained a β -O-D-glucoypyranosyl residue as evidenced by the characteristic signals for the anomeric H-atom (δ (H) 4.82 (d, J = 7.6)) and anomeric Catom (δ (C) 102.2 (d)), and C(6) (δ (C) 62.4 (t)). The structure of **1** was established as iriflophenone 2-O- β -D-glucopyranoside by comparison with literature data [9]. The ¹³C-NMR data of 1 (CD₃OD) were almost identical to those reported except for the data for C(1) and C(1') [9]. The reported chemical shifts for C(1) (δ (C) 99.8) and C(1') $(\delta(C) 124.4)$ should be revised to $\delta(C) 110.3$ (s) and $\delta(C) 132.1$ (s), respectively. The revised assignments were confirmed by the correlations in the HMBC spectrum: C(1) $(\delta(C) \ 110.3, s)/H-C(3) \ (\delta(H) \ 6.24, d)$ and $H-C(5) \ (\delta(H) \ 6.06, d)$, and $C(1') \ (\delta(C) \ ($ 132.1, s/H-C(3')/H-C(5') (δ (H) 6.78, d). During our literature survey, we also found that the reported ¹H- and ¹³C-NMR data (D₂O) for iriflophenone 4-O-β-D-glucopyranoside [8] were identical to those of $1 (D_2O)$. To clarify the glycosylated position, an NOESY experiment for 1 was carried out. This spectrum showed that the anomeric Hatom had NOE correlation with one aryl H-atom ($\delta(H)$ 6.24) only, instead of two as expected for the 4-O- β -D-glucopyranoside (for a typical NOESY depiction, see Fig. 2 for compound 4). Likewise, the HMBC spectrum of 1 (for a typical HMBC, see Fig. 2 for compound 4) revealed that the signal of the O-glucosylated C-atom (δ (C) 158.7, C(2)), assigned by its correlation to the anomeric H-atom (δ (H) 4.82), correlated to one aryl H-atom singlet only ($\delta(H)$ 6.24, H-C(3)). Hence, the structure of iriflophenone 4-O- β -D-glucopyranoside reported in [8] should be revised as **1**.

Fig. 2. NOESY Correlations and HMBCs of compound 4 (CD₃OD, 400 MHz)

Compound **2** had a molecular formula $C_{26}H_{24}O_{14}$, as deduced from HR-ESI-MS. Its ¹H- and ¹³C-NMR spectra were highly similar to those of **1** except for the presence of additional signals typical for a galloyl moiety (δ (H) 7.07 (s, H–C(2^{'''}), H–C(6^{'''})); δ (C) 168.3 (s, C(7^{'''})), 146.4 (s, C(3^{'''}), C(5^{'''})), 139.8 (s, C(1^{'''})), and 110.2 (d, C(2^{'''}), C(6^{'''}))) [10]. Hence, **2** is a galloyl derivative of **1**. The ¹H-NMR assignment of the glucosyl moiety in **2** (*Table 1*) was accomplished by analysis of a COSY spectrum. These data revealed that the signals of the Glc CH₂(6) (*i.e.*, CH₂(6'')) in **2** were downfield-shifted relative to those in **1** (δ (H) 4.46/4.38 *vs*. 3.86/3.67) (*Table 1*). Accordingly, the structure of **2** was established as iriflophenone 2-*O*-(6-*O*-galloyl)- β -D-glucopyranoside. This structure was supported by the correlation of the ester C-atom (*i.e.*, C(7^{'''})) to the Glc CH₂(6) (*i.e.*, CH₂(6'')) and H–C(2)/H–C(6) of the galloyl residue (*i.e.*, H–C(2^{'''})/H–C(6^{'''})) observed in the HMBC spectrum.

Compound **3** had a molecular formula $C_{26}H_{24}O_{12}$, as deduced from HR-ESI-MS. Its ¹H- and ¹³C-NMR spectra were also very similar to those of **1** except for the presence of additional signals typical for a 4-hydroxybenzoyl moiety, an AA'XX' system at $\delta(H)$ 7.90 (d, H–C(2^{'''})/H–C(6^{'''})) and 6.83 (d, H–C(3^{'''})/H–C(5^{'''})) (J_{AX} =8.8 Hz) in the ¹H-NMR spectrum, and $\delta(C)$ 168.1 (s, C(7^{'''})), 163.5 (s, C(4^{'''})), 133.0 (d, C(2^{'''}), C(6^{'''})), and 116.2 (d, C(3^{'''}), C(5^{'''})) in the ¹³C-NMR spectrum [11]. Since the signals of the Glc CH₂(6) (*i.e.*, CH₂(6^{''})) in **3**, assignable on the basis of the characteristic coupling pattern, were also downfield-shifted relative to those in **1** ($\delta(H)$ 4.60/4.25 in **3** *vs*. 3.86/3.67 in **1**), this arylcarboxyl residue was *O*-linked to the Glc C(6). Accordingly, the structure of **3** was established as iriflophenone 2-*O*-[6-*O*-(4-hydroxybenzoyl]- β -D-glucopyranoside.

Compound 4 had a molecular formula $C_{33}H_{28}O_{18}$, as deduced from HR-ESI-MS. Its ¹H- and ¹³C-NMR spectra were similar to those of 2 except for the presence of additional signals typical for another galloyl moiety at $\delta(H)$ 6.92 (*s*, 2 H) in the ¹H-NMR spectrum, and the corresponding C-atom signals in the ¹³C-NMR spectrum

	δ(H)				δ(C)			
	1	2	3	4 ^a)	1	5	3 4	(q†
C(1)					110.3(s)	110.7(s)	110.6 (s) 1	11.3 (s)
C(2)					158.7 (s)	158.6(s)	158.6 (s) 1	57.9 (s)
H-C(3)	$6.24 \ (d, J = 1.8)$	6.22 (d, J = 2.0)	6.25 (d, J = 2.0)	$6.27 \ (d, J = 2.2)$	95.8(d)	96.2 (d)	95.9(d)	96.8(d)
C(4)					162.4(s)	162.2(s)	160.1 (s) 1	58.9 (s)
H-C(5)	6.06 (d, J = 1.8)	6.07 (d, J = 2.0)	6.08 (d, J = 2.0)	6.06(d, J=2.2)	98.1(d)	98.4(d)	98.4(d)	98.7 (d)
C(6)					159.6(s)	159.7(s)	162.7 (s) 1	(61.6 (s)
C(7)					197.5 (s)	197.4(s)	197.6 (s) 1	96.7 (s)
C(1')					132.1 (s)	132.3(s)	132.4 (s) 1	31.6 (s)
H-C(2′/6′)	7.68 (d, J = 8.8)	7.65 (d, J = 8.8)	7.64 (d, J = 8.7)	$7.41 \ (d, J = 8.7)$	133.5(d)	133.4(d)	133.4(d)	33.2(d)
H-C(3′/5′)	6.78 (d, J = 8.8)	$6.74 \ (d, J = 8.8)$	6.73 (d, J = 8.7)	6.56 (d, J = 8.7)	115.8(d)	115.8(d)	155.7(d)	15.6(d)
C(4′)					163.6(s)	163.4(s)	163.4(s)	63.4 (s)
H-C(1'')	4.82 (d, J = 7.6)	ca. 4.80°)	4.89 (d, J = 7.8)	5.09 (d, J = 8.0)	102.2(d)	102.4(d)	101.1 (d)	(00.8 (d))
H-C(2'')	$3.09 \ (dd, J = 7.6, 8.8)$	$3.11 \ (dd, J = 7.7, 9.3)$	$3.08 \ (dd, J = 9.0, 7.8)$	ca. 4.80°)	74.6(d)	74.6(d)	74.5 (d)	74.6(d)
H-C(3'')	3.37 (dd, J = 8.8, 9.3)	3.38-3.44 (m)	3.39 (t, J = 9.0)	$3.63 \ (dd, J = 8.0, 9.0)$	(p) L'LL	77.6 (d)	(p) L'LL	76.3 (d)
H-C(4'')	3.27(t, J = 9.3)	3.36-3.42 (m)	<i>ca.</i> 3.31 ^d)	3.58 (dd, J = 9.0, 9.2)	71.0(d)	71.1 (d)	71.6(d)	71.2 (d)
H-C(5'')	3.33 - 3.37 (m)	$3.61 \ (ddd, J = 2.2, 4.8, 9.5)$	$3.60 - 3.64 \ (m)$	$3.71 \ (ddd, J = 2.2, 4.4, 9.5)$	78.1 (d)	75.5 (d)	75.5 (d)	75.6 (d)
$CH_2(6'')$	$3.86 \ (dd, J = 12.3, 2.3),$	$4.46 \ (dd, J = 2.2, 12.1),$	$4.60 \ (dd, J=2.1, 11.8),$	$4.51 \ (dd, J = 2.2, 12.0),$	62.4(t)	$(64.4 \ (t))$	65.0(t)	64.2 (t)
	3.67 (dd, J = 12.3, 5.3)	4.38 (dd, J = 4.8, 12.1)	4.25 (dd, J = 7.0, 11.8)	$4.40 \ (dd, J = 12.0, 4.4)$				
C(1''')						121.3 (s)	122.0 (s) 1	21.4(s)
H-C(2"'/6"'')		7.07 (s)	7.90 (d, J = 8.8)	6.92 (s)		110.2(d)	133.0(d) 1	10.6(d)
H-C(3"'/5"'')			(6.83 (d, J = 8.8))			146.4(s)	116.2 (d)	46.1(s)
C(4''')						139.8(s)	163.5 (s) 1	39.7 (s)
C(7''')						168.3(s)	168.1 (s) 1	(e.9 (s)
^a) ¹ H-NMR E C(3''''/5'''')), 1	Data for galloyl-2 (\mathbb{R}^2): δ 39.8 (s, $\mathbb{C}(4''')$), 168.3 (s)	(H) 7.11 (s, H–C(2 ^{'''} /6 ^{'''})) ; C(7 ^{'''})). ^c) Signals overlapy	^b) ¹³ C-NMR data for g ped with DOH. ^d) Signa	alloyl-2 (\mathbb{R}^2): $\delta(\mathbb{C})$ 121.3 (s, ls overlapped with \mathbb{CD}_2 HOI	C(1'''), 1 D.	l10.3 (d, C	((2""/6"")),	146.5 (s,

Table 1. ¹*H*- and ¹³*C*-*NMR Data of Compounds* 1-4 (¹*H* at 400 MHz; ¹³*C* at 100 MHz, in CD₃OD)

(*Table 1*). Hence, **4** is a galloyl derivative of **2**. The ¹H-NMR data of the glucosyl moiety in **4**, assigned based on the analysis of a COSY spectrum, revealed that the signals of the Glc H-C(1), H-C(2), and CH₂(6) in **4** were downfield-shifted relative to those in **1** (δ (H) 5.09 vs. 4.82 (H-C(1)); 4.80 vs. 3.09 (H-C(2)); 4.51/4.40 vs. 3.86/ 3.67 (CH₂(6))). Accordingly, the two galloyl residues were *O*-linked to the Glc C(2) and C(6), respectively. The structure of **4** was established as iriflophenone 2-*O*-(2,6-di-*O*-galloyl)- β -D-glucopyranoside. This structure was confirmed by the observation of the correlation of the galloyl-1 (R') C(7) (*i.e.*, C(7'''), an ester C-atom) to the Glc H-C(2) (*i.e.*, H-C(2'')), and the galloyl-2 (R') C(7) (*i.e.*, C(7'''')) to the Glc CH₂(6) (*i.e.*, CH₂(6'')) in the HMBC spectrum (*Fig. 2*).

Compounds **5**–**9** were flavonol 3-*O*-glycosides, and were identified as quercetin 3-*O*- β -D-glucopyranoside (**5**) [12], quercetin 3-*O*- α -L-arabinopyranoside (**6**) [13], kaempferol 3-*O*-robinobioside (**7**) [14], isorhamnetin 3-*O*-robinobioside (**8**) [15], and kaempferol 3-*O*- β -D-galactopyranoside (**9**) [16], upon comparing their spectroscopic data to those reported.

To the best of our knowledge, the benzophenone glucosides 2-4 are new chemical entities. The complete ¹H- and ¹³C-NMR spectral assignments for these compounds (*Table 1*) were accomplished based on detailed 1D- and 2D-NMR spectral analysis as indicated above. The NOESY and HMBC correlations for **4** are depicted in *Fig. 2* as typical examples for compounds 1-4.

The inhibitory activities of compounds 1-9 against α -glucosidase type IV from *Bacillus stearothermophilus* [3] were assayed (*Table 2*). The flavonol glycosides 7-9 with kaempferol or 3'-methoxykaempferol as aglycon were inactive at a concentration of 100 µg/ml. The flavonol glycoside 6 with quercetin as aglycon showed some activity with 40.1% inhibition at the same concentration. Hence, the presence of more phenolic functions in the aglycon, such as quercetin in 5 vs. kaempferol in 7, and a less-polar glycosyl residue, such as L-arabinosyl in 6 vs. D-glucosyl in 5, appear to increase the activity (*Table 2*). As for benzophenone glucosides 1-4, the inhibition order is as follows: 4 (91.4%), 1 (33.0%), 2 (9.6%), 3 (3.5%). Thus, more galloyl residues (4 vs. 2) and more phenolic functions (2 vs. 3) provide better activity as observed for stilbenoids

Compound	Inhibition [%] ^a) ^b)		
	100 µg/ml	10 μg/ml	
1	33.0 ± 3.1	-1.6 ± 5.7	
2	9.6 ± 7.1	0.2 ± 5.5	
3	3.5 ± 2.4	1.4 ± 2.8	
4	91.4 ± 6.3	15.0 ± 6.9	
5	9.7 ± 1.4	2.2 ± 0.6	
6	40.1 ± 7.8	-0.6 ± 0.7	
7	-13.3 ± 1.2	-4.5 ± 1.5	
8	-14.2 ± 3.4	-5.6 ± 2.3	
9	-8.7 ± 3.8	-6.5 ± 1.6	

Table 2. Inhibitory Effects of Compounds 1-9 against α -Glucosidase

^a) The % inhibition at two concentrations of each tested compound in triplicate experiments was expressed as mean \pm SD. ^b) The % inhibition of the positive control acarbose: 70.5 ± 5.2 at 40 ng/ml.

[3]. At 10 µg/ml, only compound **4** showed weak activity, 15.0% inhibition, which was even weaker than the BuOH-soluble fraction (97 and 20% inhibition at 100 and 10 µg/ml, resp.) of the MeOH extract of the leaves. This may be due to synergistic effects or the presence of additional active constituents in the extract.

Experimental Part

General. HPLC: Agilent 1100 system, Phenomenex Prodigy ODS-3 ($250 \times 10 \text{ mm}$, 5 µm; semiprep.), Lichrospher RT RP-18e ($250 \times 25 \text{ mm}$, 5 µm; prep. use) (Merck, D-Darmstadt), detection at 280 nm, MeCN and MeOH (Mallinckrodt Baker Inc., USA), deionized H₂O (Barnstead water purification system, Dubuque, IA, USA). Centrifugal partition chromatography (CPC): Sanki CPC (model LLB-M, 110 ml; Sanki Engineering Ltd., Kyoto, Japan). TLC (System 1): silica gel 60 F₂₅₄ (Merck, D-Darmstadt); CHCl₃/MeOH/H₂O 7:4:1. Bioassay system: SPECTRAmax_PLUS (Molecular Devices, California, USA); p-nitrophenyl a-D-glucopyranoside, a-glucosidase type IV from B. stearothermophilus (Sigma – Aldrich Co., Germany), K₂HPO₄ and KH₂PO₄ (Merck, D-Darmstadt). M.p.: DSC. Optical rotations: Jasco DIP-370 polarimeter. UV Spectra (MeOH): λ_{max} nm (log ε), Hitachi 150-20 Double Beam spectrophotometer. CD Spectra (MeOH): λ in nm, Jasco J-720 spectropolarimeter. IR Spectra (KBr): Jasco FT/IR-410 spectrometer; in cm⁻¹. ¹H-, ¹³C-, and 2D-NMR spectra: Bruker AV-400 spectrometer (δ in ppm, in CD₃OD, residual non-deuterated solvent peaks as reference: δ (H) 3.30 and δ (C) 49.0 ppm, J in Hz). MS: MicrOTOF orthogonal ESI-TOF (HR-ESI-MS) mass spectrometer (Bruker, Daltonik, D-Bremen), in m/z (rel. %).

Plant Material. The leaves of *Planchonella obovata* (R. Br.) PIERRE were collected in September 2006, in Lanyu Island, Taitung County, Taiwan. A specimen was authenticated by Prof. *Ih-Sheng Chen*, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan. A voucher specimen (NTUSP200609A) was deposited with the Herbarium of School of Pharmacy, National Taiwan University.

Extraction and Isolation. The powdered, dried leaves (342.6 g) were percolated with MeOH (2.5 l × 3) at r.t. and then extracted with warm MeOH (21, 50°) to give the MeOH extract (50.2 g) upon evaporation under reduced pressure. This extract suspended in H₂O (500 ml) was partitioned against CH₂Cl₂ (3×300 ml), AcOEt (1×300 ml), and BuOH (sat. with H₂O, 3×300 ml) to give fractions soluble in CH₂Cl₂ (13.1 g), AcOEt (6.8 g), BuOH (9.1 g), and H₂O (24.4 g). A portion of the AcOEtsoluble fraction (E.I, 2.6 g) was fractionated on a CPC ($\times 2$, 1.35 g each run) with the upper phase of CHCl₃/MeOH/H₂O 10:10:5 as mobile phase, to give four fractions (E.I-1-E.I-4). Fr. E.I-2 (147.7 mg) yielded 1 (25.6 mg) and 2 (49.4 mg) after separation over a Sephadex LH-20 column (329 ml, 50% MeOH_{aq}). Fr. E.I-3 (75.6 mg) yielded 3 (4.5 mg) after separation over a Sephadex LH-20 (329 ml, 75% MeOH_{ag}), followed by semi-prep. HPLC on an RP-18 column (four runs, 18% MeCN_{ag}, flow rate 2.5 ml/ min), and two successive Sephadex LH-20 columns (106 ml, 50% MeOH_{ac}; 85 ml, MeOH). Another portion of the AcOEt-soluble fraction (E.II, 2.7 g) was fractionated on a Sephadex LH-20 column (740 ml, MeOH) to give three fractions (E.II-1 – E.II-3). Fr. E.II-2 (966 mg) was sonicated with CH₂Cl₂ and AcOEt, 20 ml each, in sequence to give fractions soluble in CH₂Cl₂ and AcOEt (*E.II-2E*, 399 mg). Fr. E.II-2E was separated over a Sephadex LH-20 column (353 ml, CH₂Cl₂/MeOH 1:1) to give four fractions (E.II-2E-1-E.II-2E-4). Fr. E.II-2E-4 (6.0 mg) was pure 4. Fr. E.II-2E-2 (21.4 mg) dissolved in 50% MeOH_{ag} was separated by semi-prep. HPLC on an RP-18 column (4 runs), delivered with 17% $MeCN_{aq}$, yielded 5 (4.7 mg) and 6 (1.4 mg). The BuOH-soluble fraction (B, 9.1 g) was fractionated on a Sephadex LH-20 column (3.31 l, MeOH) to give seven fractions (B-1-B-7), combined based on silicagel TLC analysis. Part of Fr. B-2 (222 mg out of 1.30 g) was further purified by CC on Sephadex LH-20 (328 ml, MeOH/H₂O 3 : 1) to give additional crop of compound 1 (146 mg). Most of Fr. B-3 (140 mg out of 175 mg) dissolved in 9% $MeCN_{aq}$ was separated by prep. HPLC on a *RP-18* column (four runs), delivered with 9% to 32% $MeCN_{aq}$ in 60 min by a linear gradient mode, flow rate 8.2 ml/min, to give three fractions (B-3-1-B-3-3). Fr. B-3-2 (t_R 42-55 min; 36.7 mg) was further separated by semi-prep. HPLC on a RP-18 column (five runs), eluted by 37 to 41% MeOH_{aq}, flow rate 2.4 ml/min, to give three fractions (*Frs. B-3-2-1 – B-3-2-3*). *Fr. B-3-2-2* (3.4 mg; $t_{\rm R}$ 45.7 min) yielded 7 (2.0 mg) after separation over a *Sephadex LH-20* column (97 ml, MeOH). *Fr. B-3-2-3* (6.7 mg) yielded **8** (1.6 mg; t_R 21.2 min) after separation by semi-prep. HPLC on a *RP-18* column (two runs), eluted by 20% MeCN_{aq}, flow rate 2.5 ml/ min with UV detection at 280 nm. Most of *Fr. B-5* (150 mg out of 197 mg) dissolved in 50% MeOH_{aq} was separated by prep. HPLC on a *RP-18* column (four runs), with 19% MeCN_{aq}, flow rate 8.0 ml/min, detection at 280 nm, to give **9** (t_R 54.2 min; 1.2 mg) and additional crop of **3** (t_R 57 min; 10.8 mg). *Fr. B-6* (461 mg) was separated on a *Sephadex LH-20* column (329 ml, 75% MeOH_{aq}), followed by recrystallization (H₂O), to yield additional crop of **2** (53.9 mg).

Assay for α -Glucosidase Activity. Tests were performed by the method of Pistia-Brueggemann and Hollingsworth [17], slightly modified according to [3]. Compounds **1**–**9** were dissolved in 10% MeOH_{aq} and assayed against α -glucosidase (type IV from Bacillus stearothermophilus). Acarbose (Bayer) was chosen as the pos. control.

Iriflophenone 2-O-β-D-*Glucopyranoside* (= 3,5-*Dihydroxy*-2-*[(4-hydroxyphenyl)carbonyl]phenyl* β-D-*Glucopyranoside*; **1**). TLC (System 1): R_f 0.57. $[a]_{25}^{25} = -30.0$ (c = 0.1, MeOH) ([10]: -24 (c = 1.0, MeOH)). CD: $[\theta]_{231}$ +5822, $[\theta]_{240}$ +3533, $[\theta]_{277}$ +5985, $[\theta]_{298}$ +3156. ¹H- and ¹³C-NMR: *Table 1* (CD₃OD).

Iriflophenone 2-O-(6-O-Galloyl)-β-D-glucopyranoside (=3,5-Dihydroxy-2-[(4-hydroxyphenyl)carbonyl]phenyl 6-O-[(3,4,5-Trihydroxyphenyl)carbonyl]-β-D-glucopyranoside; **2**). TLC (System 1): $R_{\rm f}$ 0.43. M.p. 220.9°. [α]_D= - 10.0 (c = 0.1, MeOH). UV: 276 (4.48), 219 (4.88). CD (MeOH): [θ]₂₃₀ + 9603, [θ]₂₄₃ + 5960, [θ]₂₆₉ + 7047. IR: 3522, 3274, 1682, 1595, 1510, 1455, 1325, 1264, 1192, 1177, 1081, 1048, 925, 833, 772. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS (neg.): 559.0 ([M – H]⁻). ESI-MS (pos.): 583.1 ([M + Na]⁺). HR-ESI-MS (neg.): 559.1094 ([M – H]⁻, C₂₆H₂₃O₁₄; calc. 559.1088).

Iriflophenone 2-O-[6-O-(4-Hydroxybenzoyl)]- β -D-glucopyranoside (= 3,5-Dihydroxy-2-[(4-hydroxy-phenyl)carbonyl]phenyl 6-O-[(4-Hydroxyphenyl)carbonyl]- β -D-glucopyranoside; **3**). TLC (System 1): $R_{\rm f}$ 0.67. [a]_D²⁴ = -5.0 (c = 0.1 MeOH). UV: 273 (4.42), 214 (4.87). CD (MeOH): [θ]₂₂₇ + 10271, [θ]₂₅₇ + 9498. IR: 3336, 2925, 1698, 1604, 1511, 1455, 1275, 1167, 1072, 769. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS (neg.): 527.1 ([M – H]⁻). ESI-MS (pos.): 551.2 ([M + Na]⁺). HR-ESI-MS (neg.): 527.1174 ([M – H]⁻, $C_{26}H_{23}O_{12}^-$; calc. 527.1190).

Iriflophenone 2-O-(2,6-*Di*-O-galloyl)-β-D-glucopyranoside (= 3,5-*Dihydroxy*-2-[(4-hydroxyphenyl)carbonyl]phenyl 2,6-Bis-O-[(3,4,5-trihydroxyphenyl)carbonyl]-β-D-glucopyranoside; **4**). TLC (System 1): $R_{\rm f}$ 0.13. $[a]_{25}^{\rm 25} = -30.0$ (c = 0.1, MeOH). UV: 274 (4.63), 217 (5.01). CD (MeOH): $[θ]_{215} + 3517$, $[θ]_{233} + 3282$, $[θ]_{258} + 12016$, $[θ]_{265} + 13089$, $[θ]_{273} + 13375$, $[θ]_{313} + 73$ $[θ]_{366} + 6981$. IR: 3355, 1704, 1609, 1450, 1317, 1228, 1034, 930, 762. ¹H- and ¹³C-NMR: *Table 1*. HMBC and NOESY: *Fig. 2*. ESI-MS (neg.): 710.7 ($[M - H]^-$). ESI-MS (pos.): 734.8 ($[M + Na]^+$). HR-ESI-MS (neg.): 711.1220 ($[M - H]^-$, $C_{33}H_{27}O_{18}$; calc. 711.1197).

We thank Prof. *Ih-Sheng Chen*, College of Pharmacy, Kaohsiung Medical University, for plant authentification. We also thank the *Bureau of Standards, Metrology and Inspection, M.O.E.A.*, to let us operate the micrOTOF orthogonal ESI-TOF mass spectrometer to record HR-ESI-MS. This work was supported by the *National Science Council*, Taiwan, R.O.C., under the Grants of NSC 95-2320-B-002-033 and NSC 96-2320-B-002-015.

REFERENCES

- [1] A. Y. Y. Cheng, I. G. Fantus, Can. Med. Assoc. J. 2005, 172, 213.
- [2] L. J. Scott, C. M. Spencer, Drugs 2000, 59, 521.
- [3] S.-H. Lam, J.-M. Chen, C.-J. Kang, C.-H. Chen, S.-S. Lee, Phytochemistry 2008, 69, 1173.
- [4] H.-L. Li, in 'Flora of Taiwan', 2nd edn., Ed. T. C. Huang, Editorial Committee of the Flora of Taiwan, Taipei, 1996, Vol. IV, p. 86.
- [5] N. K. Hart, J. A. Lamberton, Aust. J. Chem. 1966, 19, 1259; N. K. Hart, S. R. Johns, J. A. Lamberton, Aust. J. Chem. 1968, 21, 1393.
- [6] T. H. Lee, S. H. Juang, F. L. Hsu, C. Y. Wu, J. Chin. Chem. Soc. (Taipei, Taiwan) 2005, 52, 1275.
- [7] R. C. Cambie, N. A. Ser, T. Kokubun, Biochem. Syst. Ecol. 1997, 25, 677.

- [8] S. Rancon, A. Chaboud, N. Darbour, G. Comte, C. Bayet, P.-N. Simon, J. Raynaud, A. Di Pietro, P. Cabalion, D. Barron, *Phytochemistry* 2001, 57, 553.
- [9] H. Ito, E. Nishitani, T. Konoshima, M. Takasaki, M. Kozuka, T. Yoshida, *Phytochemistry* **2000**, *54*, 695.
- [10] T. Tanaka, G. Nonaka, I. Nishioka, Chem. Pharm. Bull. 1984, 32, 117.
- [11] S. Klick, K. Herrmann, Phytochemistry 1988, 27, 2177.
- [12] A. Braca, M. Politi, R. Sanogo, H. Sanou, I. Morelli, C. Pizza, N. De Tommasi, J. Agric. Food Chem. 2003, 51, 6689.
- [13] H. Arima, G. Danno, Biosci. Biotechnol. Biochem. 2002, 66, 1727.
- [14] W.-C. Hou, R.-D. Lin, T.-H. Lee, Y.-H. Huang, F.-L. Hsu, M.-H. Lee, J. Sci. Food Agric. 2005, 85, 615.
- [15] L. Rastrelli, P. Saturnino, O. Schettino, A. Dini, J. Agric. Food Chem. 1995, 43, 2020.
- [16] S. Scharbert, N. Holzmann, T. Hofmann, J. Agric. Food Chem. 2004, 52, 3498.
- [17] G. Pistia-Brueggeman, R. I. Hollingsworth, Tetrahedron 2001, 57, 8773.

Received July 13, 2009